

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

DESIGNER'S DATA SHEET

Part Number / Ordering Information^{1/}

SFF440

Screening^{2/} = Not Screened TX = TX Level TXV = TXV Level S = S Level

Pin Configuration

= Normal R = Reverse

Lead Bend

_ = Straight UB = Up Bend DB = Down Bend

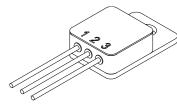
Package^{3/} J = TO-257

SFF440J SFF440JR

8 AMP N-Channel Power MOSFET 500 Volts 0.86Ω

Features:

- Rugged construction with polysilicon gate
- Low RDS(on) and high transconductance
- Excellent high temperature stability
- Very fast switching speed
- Fast recovery and superior dv/dt performance
- Increased reverse energy capability
- Low input and transfer capacitance for easy paralleling
- Hermetically sealed package
- Low inductance leads
- TX, TXV, S-Level screening available
- Replaces: IRF440 types


Maximum Ratings		Symbol	Value	Unit
Drain - Source Voltage		V _{DS}	500	V
Gate - Source Voltage		V_{GS}	±20	V
Max. Continuous Drain Current (package limited) @ 25°C		I _D	6.9	Α
Operating & Storage Temperature		TOP & TSTG	-55 to +150	°C
Maximum Thermal Resistance (Junction to Case)		$R_{ heta JC}$	2	°C/W
Total Power Dissipation	@ T _C = 25°C @ T _C = 55°C	P D	63 48	W

NOTES:

*Pulse Test: Pulse Width = 300 µsec, Duty Cycle = 2%.

- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Maximum current limited by package configuration.
- 4/ Unless otherwise specified, all electrical characteristics @25°C.

TO-257 (J)

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: F00087D

DOCX

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

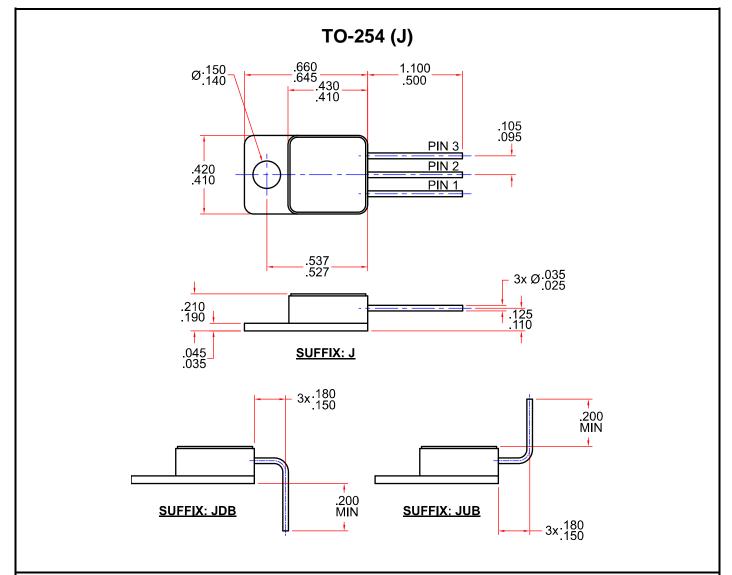
SFF440J SFF440JR

Electrical Characteristics4		Symbol	Min	Тур	Max	Unit
Drain to Source Breakdown Volta	ge $V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$	BV _{DSS}	500	570	_	٧
Drain to Source On State Resistar	vice $V_{GS} = 10 \text{ V}, I_D = 60\% \text{ Rated } I_D$	R _{DS(on)}		0.65	0.86	Ω
Gate Threshold Voltage	$V_{DS}=V_{GS},I_D=250\;\mu A$	V _{GS(th)}	2.0	3.2	4.0	V
Forward Transconductance	$V_{DS} \ge 15 \text{ V}, I_D = 60\% \text{ Rated } I_D$	g _{fs}	4.9	6		S(℧)
Zero Gate Voltage Drain Current V _{DS} = 80	V_{DS} = max rated voltage, V_{GS} = 0 V $\%$ Rated V_{DS} , V_{GS} = 0 V, T_A = 125 $^{\circ}$ C	I _{DSS}		0.015 5	25 250	μΑ
Gate to Source Leakage Forward Gate to Source Leakage Reverse	At rated V _{GS}	I _{GSS}	_	_ _	100 -100	nA
Total Gate Charge Gate to Source Charge Gate to Drain Charge	V_{GS} = 10 V 80% Rated V_{DS} I_D = 8 A	Q _g Q _{gs} Q _{gd}		30 8 12	50 10 25	nC
Turn on Delay Time Rise Time Turn off Delay Time Fall Time	V_{DD} = 50% Rated V_{DS} I _D = 8 A R _G = 9.1 Ω R _D = 30 Ω	$egin{array}{c} t_{d(on)} \ t_r \ t_{d(off)} \ t_f \end{array}$		30 40 62 30	40 60 74 40	nsec
Diode Forward Voltage	Is = Rated I _D , V _{GS} = 0 V, T _J = 25°C	V _{SD}		0.85	1.2	V
Diode Reverse Recovery Time Reverse Recovery Charge	$T_J = 25$ °C, $I_F = Rated I_D$, $di/dt = 100 A/\mu sec$	t _{rr} Q _{rr}	210 2	900 7.7	970 8.9	nsec μC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\begin{array}{c} V_{GS}=0 \ V \\ V_{DS}=25 \ V \\ f=1 \ MHz \end{array}$	C _{iss} C _{oss} C _{rss}		1450 180 40		pF

NOTES:

^{*}Pulse Test: Pulse Width = 300 µsec, Duty Cycle = 2%.

^{1/} For ordering information, price, and availability - contact factory.
2/ Screening based on MIL-PRF-19500. Screening flows available on request.


^{3/} Maximum current limited by package configuration.

^{4/} Unless otherwise specified, all electrical characteristics @25°C.

SFF440JR

DIN	VECIUMENT	(Ctandard)

Package	Pin 1	Pin 2	Pin 3
TO-257 (J)	Drain	Source	Gate
TO-257 (JR)	Gate	Drain	Source

Available Part Numbers:

SFF440J, SFF440JUB, SFF440JUBR, SFF440JDB, SFF440JDBR