

14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4470 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

DESIGNER'S DATA SHEET

Part Number / Ordering Information 1/

SFF9140 -28

Screening 2/
= Not Screened
TX = TX Level
TXV = TXV Level
S = S Level

Package -28 = LCC28

SFF9140-28

-18 AMP
-100 Volts
0.20 Ω
P-Channel
POWER MOSFET

Features:

- Rugged Construction with Poly Silicon Gate
- Low R_{DS(ON)} and High Transconductance
- Excellent High Temperature Stability
- Very Fast Switching Speed
- Fast Recovery and Superior dv/dt Performance
- Increased Reverse Energy Capability
- Low Input and Transfer Capacitance for Easy Paralleling
- Hermetically Sealed
- TX, TXV, and Space Level Screening Available. Consult Factory.
- Replaces IRF9140 Types

Maximum Ratings⁵		Symbol	Value	Unit	
Drain – Source Voltage		$V_{ t DS}$	-100	V	
Gate – Source Voltage		V_{GS}	±20	V	
Continuous Drain Current	$T_C = 25$ °C $T_C = 100$ °C	I _D	18 11	Α	
Operating & Storage Temperature		T _{OP} & T _{STG}	-55 to +150	°C	
Thermal Resistance, Junction to Case		$R_{ heta JC}$	3.5	°C/W	
Total Device Power Dissipation	$T_C = 25^{\circ}C$ $T_C = -55^{\circ}C$	P _D	36 27	W	
Single Pulse Avalanche Energy		E _{AS}	500	mJ	
Repetitive Avalanche Energy		E _{AR}	12.5	mJ	

NOTES:

*Pulse Test: Pulse Width = 300 µsec, Duty Cycle = 2%.

- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @25°C.

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: FP0011C

DOC

SFF9140-28

Electrical Characteristics ^{3/}		Symbol	Min	Тур	Max	Unit
Drain to Source Breakdown Voltage $(V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA})$		BV _{DSS}	-100			v
Drain to Source On State Resistance (V _{GS} = -10 V)	I _D = 11 A I _D = 18 A	R _{DS(ON)}		0.15	0.20 0.23	Ω
Temperature Coefficient of Breakdown Voltage		$\frac{\Delta \mathbf{BV_{DSS}}}{\Delta \mathbf{T_{J}}}$		-0.087		Α
Gate Threshold Voltage (V _{DS} = V _{GS} , I _D = -250 µA)		$V_{GS(th)}$	-2.0		-4.0	V
Forward Transconductance $(V_{DS} \ge 15 \text{ V}, I_{DS} = 11 \text{ A})$		g fs	6.2	8		S(℧)
Zero Gate Voltage Drain Current $(V_{DS} = 80\% \text{ rated voltage, } V_{GS} = 0 \text{ V})$ $(V_{DS} = 80\% \text{ rated voltage, } V_{GS} = 0 \text{ V})$	T _A = 25°C T _A = 125°C	I _{DSS}			25 250	μΑ
Gate to Source Leakage Forward Gate to Source Leakage Reverse	At Rated V _{GS}	I _{GSS}			-100 100	nA
Total Gate Charge Gate to Source Charge Gate to Drain Charge	V_{GS} = -10 V 50% rated V_{DS} I_D = 18 A	$egin{array}{c} oldsymbol{Q}_{g} \ oldsymbol{Q}_{gs} \ oldsymbol{Q}_{gd} \end{array}$	31 	50 3 25	70 18 45	nC
Turn on Delay Time Rise Time Turn off Delay Time Fall Time	V_{DD} = 50% rated V_{DS} rated I_{D} R_{G} = 9.1 Ω	$egin{aligned} \mathbf{t_{d(on)}} \ \mathbf{t_r} \ \mathbf{t_{d(off)}} \ \mathbf{t_f} \end{aligned}$		15 8 35 20	35 85 85 65	ns
Diode Forward Voltage $(I_S = Rated I_{D_1} V_{GS} = 0 V, T_J = 25^{\circ}C)$		V _{SD}			-4.2	v
Diode Reverse Recovery Time Reverse Recovery Charge	$T_J = 25^{\circ}C$ $I_F = 10 A$ $di/dt = 100 A/\mu sec$	t _{rr} Q _{RR}		170 —	280 3.6	ns µC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{GS} = 0 V$ $V_{DS} = -25 V$ $f = 1 MHz$	C _{iss} C _{oss} C _{rss}	 	1400 600 200		pF

