14701 Firestone Blvd * La Mirada, CA 90638 Phone: (562) 404-4470 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com ## **DESIGNER'S DATA SHEET** Part Number / Ordering Information 1/ SFF9140 -28 Screening 2/ = Not Screened TX = TX Level TXV = TXV Level S = S Level Package -28 = LCC28 ## SFF9140-28 -18 AMP -100 Volts 0.20 Ω P-Channel POWER MOSFET ## Features: - Rugged Construction with Poly Silicon Gate - Low R_{DS(ON)} and High Transconductance - Excellent High Temperature Stability - Very Fast Switching Speed - Fast Recovery and Superior dv/dt Performance - Increased Reverse Energy Capability - Low Input and Transfer Capacitance for Easy Paralleling - Hermetically Sealed - TX, TXV, and Space Level Screening Available. Consult Factory. - Replaces IRF9140 Types | Maximum Ratings⁵ | | Symbol | Value | Unit | | |--------------------------------------|---|------------------------------------|-------------|------|--| | Drain – Source Voltage | | $V_{ t DS}$ | -100 | V | | | Gate – Source Voltage | | V_{GS} | ±20 | V | | | Continuous Drain Current | $T_C = 25$ °C
$T_C = 100$ °C | I _D | 18
11 | Α | | | Operating & Storage Temperature | | T _{OP} & T _{STG} | -55 to +150 | °C | | | Thermal Resistance, Junction to Case | | $R_{ heta JC}$ | 3.5 | °C/W | | | Total Device Power Dissipation | $T_C = 25^{\circ}C$
$T_C = -55^{\circ}C$ | P _D | 36
27 | W | | | Single Pulse Avalanche Energy | | E _{AS} | 500 | mJ | | | Repetitive Avalanche Energy | | E _{AR} | 12.5 | mJ | | ## NOTES: *Pulse Test: Pulse Width = 300 µsec, Duty Cycle = 2%. - 1/ For ordering information, price, and availability contact factory. - 2/ Screening based on MIL-PRF-19500. Screening flows available on request. - 3/ Unless otherwise specified, all electrical characteristics @25°C. **NOTE:** All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release. DATA SHEET #: FP0011C DOC SFF9140-28 | Electrical Characteristics ^{3/} | | Symbol | Min | Тур | Max | Unit | |---|---|--|--------|---------------------|----------------------|----------| | Drain to Source Breakdown Voltage $(V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA})$ | | BV _{DSS} | -100 | | | v | | Drain to Source On State Resistance (V _{GS} = -10 V) | I _D = 11 A
I _D = 18 A | R _{DS(ON)} | | 0.15 | 0.20
0.23 | Ω | | Temperature Coefficient of Breakdown Voltage | | $\frac{\Delta \mathbf{BV_{DSS}}}{\Delta \mathbf{T_{J}}}$ | | -0.087 | | Α | | Gate Threshold Voltage
(V _{DS} = V _{GS} , I _D = -250 µA) | | $V_{GS(th)}$ | -2.0 | | -4.0 | V | | Forward Transconductance $(V_{DS} \ge 15 \text{ V}, I_{DS} = 11 \text{ A})$ | | g fs | 6.2 | 8 | | S(℧) | | Zero Gate Voltage Drain Current $(V_{DS} = 80\% \text{ rated voltage, } V_{GS} = 0 \text{ V})$ $(V_{DS} = 80\% \text{ rated voltage, } V_{GS} = 0 \text{ V})$ | T _A = 25°C
T _A = 125°C | I _{DSS} | | | 25
250 | μΑ | | Gate to Source Leakage Forward Gate to Source Leakage Reverse | At Rated V _{GS} | I _{GSS} | | | -100
100 | nA | | Total Gate Charge
Gate to Source Charge
Gate to Drain Charge | V_{GS} = -10 V
50% rated V_{DS}
I_D = 18 A | $egin{array}{c} oldsymbol{Q}_{g} \ oldsymbol{Q}_{gs} \ oldsymbol{Q}_{gd} \end{array}$ | 31
 | 50
3
25 | 70
18
45 | nC | | Turn on Delay Time
Rise Time
Turn off Delay Time
Fall Time | V_{DD} = 50%
rated V_{DS}
rated I_{D}
R_{G} = 9.1 Ω | $egin{aligned} \mathbf{t_{d(on)}} \ \mathbf{t_r} \ \mathbf{t_{d(off)}} \ \mathbf{t_f} \end{aligned}$ | | 15
8
35
20 | 35
85
85
65 | ns | | Diode Forward Voltage $(I_S = Rated I_{D_1} V_{GS} = 0 V, T_J = 25^{\circ}C)$ | | V _{SD} | | | -4.2 | v | | Diode Reverse Recovery Time
Reverse Recovery Charge | $T_J = 25^{\circ}C$
$I_F = 10 A$
$di/dt = 100 A/\mu sec$ | t _{rr}
Q _{RR} | | 170
— | 280
3.6 | ns
µC | | Input Capacitance Output Capacitance Reverse Transfer Capacitance | $V_{GS} = 0 V$ $V_{DS} = -25 V$ $f = 1 MHz$ | C _{iss}
C _{oss}
C _{rss} |
 | 1400
600
200 | | pF |