

#### Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com

## **Designer's Data Sheet**

#### Part Number/Ordering Information 1/

**SGF48N20** 

<sup>L</sup> Screening<sup>2/</sup>

\_\_ = Not Screened TX = TX Level TXV = TXV Level S = S Level

**Lead Bend Options** 

(TO-254 only)

\_\_ = Straight Leads UB = Up Bend DB = Down Bend

Package

M = TO-254 S1= SMD1

# SGF48N20M and SGF48N20S1

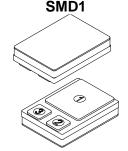
40 AMP
GaN POWER FET
Enhancement Mode
200 VOLTS, 14 – 16 mΩ

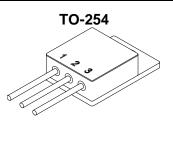
#### **FEATURES:**

- 4<sup>th</sup> Generation Gallium Nitride Technology
- Exceptionally Low RDS(ON)
- · Low Q<sub>G</sub> Simplifies Gate Drive Circuit
- · Very Fast Switching for High-Freq. Applications
- Low Thermal Resistance Hermetically Sealed Packages -Available in Chip-Scale Package (SMG.3-1)
- TX, TXV, and S-Level Screening Available<sup>2</sup>

#### **APPLICATIONS:**

- High Efficiency DC-DC/PoL Converters
- Motor Controller
- Robotics/Automation
- · Military and Aerospace


#### **BENEFITS:**


- GaN Transistor offers superior advantages over Si based MOSFET: Zero QRR, low gate charge, low RDS(ON), fast switching speed and low temperature coefficient
- · Benefits circuit designer through higher efficiency, lower cross-over losses and On-state losses
- Eliminates the need to add free-wheeling diode

| Maximum Ratings <sup>3/</sup>               | Symbol                             | Value       | Units |
|---------------------------------------------|------------------------------------|-------------|-------|
| Continuous Drain - Source Voltage           | V <sub>DSS</sub>                   | 200         | V     |
| Gate – Source Voltage                       | $V_{\sf GS}$                       | +6<br>-4    | v     |
| Continuous Drain Current                    | I <sub>D1</sub>                    | 40          | Α     |
| Pulsed Drain Current (Top / Pwidth limited) | I <sub>D2</sub>                    | 200         | Α     |
| Total Power Dissipation                     | P <sub>D</sub>                     | 25          | W     |
| Operating & Storage Temperature             | T <sub>OP</sub> & T <sub>STG</sub> | -55 to +150 | °C    |
| Thermal Resistance (Junction to Case)       | R <sub>eJC</sub>                   | 5           | °C/W  |

#### NOTES:

- 1/ For ordering information, price, operating curves, and availabilitycontact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.
- 4/ Pulse Test, P<sub>W</sub> = 300 μs, D.C. = 2%.
- 5/2 Attach device with low temperature solder such as Sn63 with peak reflow temperature of 215°C and maximum dwell time of 30 sec.

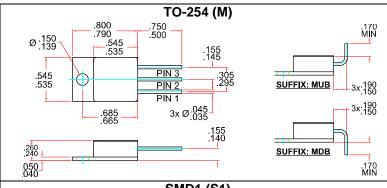




**NOTE:** All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

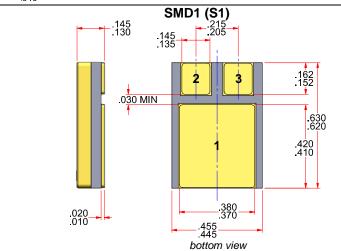
DATA SHEET #: FT0072B

**DOCX** 




Solid State Devices, Inc.

14701 Firestone Blvd \* La Mirada, Ca 90638 Phone: (562) 404-4474 \* Fax: (562) 404-1773 ssdi@ssdi-power.com \* www.ssdi-power.com


# SGF48N20M and SGF48N20S1

| Electrical Characteristics <sup>3/</sup>                                                |                                                                                                        | Symbol                                                       | Min | Тур               | Max              | Unit |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----|-------------------|------------------|------|
| Drain to Source Breakdown Voltage Vo                                                    | $_{GS} = 0 \text{ V}, I_{D} = 0.6 \text{ mA}$                                                          | BV <sub>DSS</sub>                                            | 200 | -                 | -                | V    |
| Gate to Source Leakage                                                                  | V <sub>GS</sub> = +5 V<br>V <sub>GS</sub> = -4 V                                                       | I <sub>GSS</sub>                                             | -   | 1<br>0.1          | 7<br>0.4         | mA   |
| Zero Gate Voltage Drain Current V <sub>D</sub>                                          | <sub>S</sub> = 160 V, V <sub>GS</sub> = 0 V                                                            | I <sub>DSS</sub>                                             | -   | 0.1               | 0.4              | mA   |
| Gate Threshold Voltage                                                                  | $V_{DS} = V_{GS}$ , $I_D = 7 \text{ mA}$                                                               | V <sub>GS(TH)</sub>                                          | 0.8 | 1.4               | 2.5              | V    |
| <b>Drain to Source On State Resistance</b> V <sub>GS</sub> = 5 V, I <sub>D</sub> = 20 A | SMD1<br>TO-254                                                                                         | R <sub>DS(ON)</sub>                                          | -   | 11<br>13          | 14<br>16         | mΩ   |
| Source to Drain Forward Voltage <sup>4/</sup>                                           | $I_F = 0.5 A$ , $V_{GS} = 0 V$                                                                         | $V_{SD}$                                                     | -   | 1.8               | -                | ٧    |
| Total Gate Charge V <sub>GS</sub> = 5 V, V <sub>G</sub>                                 | DS = 100 V, ID = 20 A                                                                                  | Q <sub>G</sub>                                               | -   | 9                 | 11               | nC   |
| Gate to Source Charge<br>Gate to Drain Charge<br>Gate Threshold Charge                  | V <sub>DS</sub> = 100 V<br>I <sub>D</sub> = 20 A                                                       | $oldsymbol{Q}_{GS} \ oldsymbol{Q}_{GD} \ oldsymbol{Q}_{GTH}$ |     | 3<br>1.8<br>2.2   | -<br>-<br>-      | nC   |
| Input Capacitance<br>Output Capacitance<br>Reverse Transfer Capacitance                 | $\begin{aligned} V_{GS} &= 0 \text{ V} \\ V_{DS} &= 100 \text{ V} \\ f &= 1 \text{ MHz} \end{aligned}$ | C <sub>ISS</sub><br>C <sub>OSS</sub><br>C <sub>RSS</sub>     |     | 950<br>450<br>2.3 | 1140<br>680<br>- | pF   |
| Output Charge Vo                                                                        | ss = 0 V, V <sub>DS</sub> = 100 V                                                                      | Qoss                                                         | -   | 75                | 113              | nC   |
| Source to Drain Recovery Charge                                                         |                                                                                                        | $\mathbf{Q}_{RR}$                                            | -   | 0                 | -                | μC   |
| Gate Resistance                                                                         |                                                                                                        | R <sub>G</sub>                                               | -   | 0.5               | -                | Ω    |



| PIN ASSIGNMENT |      |        |  |  |  |
|----------------|------|--------|--|--|--|
|                | SMD1 | TO-254 |  |  |  |
| Source         | 1    | 2      |  |  |  |
| Drain          | 3    | 1      |  |  |  |
| Gate           | 2    | 3      |  |  |  |
| Substrate      | *    | *      |  |  |  |

<sup>\*</sup>Substrate internally tied to Source



#### **AVAILABLE PART NUMBERS:**

SMD1: SGF48N20S1

TO-254: SGF48N20M, SGF48N20MDB,

SGF48N20MUB

### Dimensions in inches