

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet

9					
Part Number/Ordering Information ^{1/}					
SGF48N20					
L	Screening ^{2/} = Not Screened TX = TX Level TXV = TXV Level S = S Level				
Package = SMG.3-1					
	_				

SGF48N20

48 AMP GaN POWER FET Enhancement Mode 200 VOLTS, 11 mΩ

FEATURES:

- 4th Generation Gallium Nitride Technology
- Exceptionally Low RDS(ON)
- · Low Q_G Simplifies Gate Drive Circuit
- Very Fast Switching for High-Freq. Applications
- Low Thermal Resistance Hermetically Sealed Packages -Available in Chip-Scale Package (SMG.3-1)
- TX, TXV, and S-Level Screening Available^{2/}

APPLICATIONS:

- High Efficiency DC-DC/PoL Converters
- Motor Controller
- Robotics/Automation
- Military and Aerospace

BENEFITS:

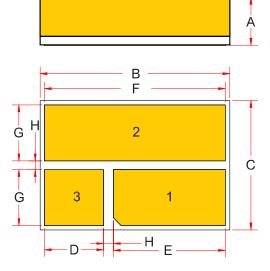
- GaN Transistor offers superior advantages over Si based MOSFET: Zero Q_{RR}, low gate charge, low R_{DS(ON)}, fast switching speed and low temperature coefficient
- Benefits circuit designer through higher efficiency, lower cross-over losses and On-state losses
- · Eliminates the need to add free-wheeling diode

Maximum Ratings ^{3/}	Symbol	Value	Units
Continuous Drain - Source Voltage	V _{DSS}	200	V
Gate – Source Voltage	V _{GS}	+6 -4	V
Continuous Drain Current	I _{D1}	48	Α
Pulsed Drain Current (Top / Pwidth limited)	I _{D2}	200	Α
Total Power Dissipation	P _D	25	W
Operating & Storage Temperature	T _{OP} & T _{STG}	-55 to +150	°C
Thermal Resistance (Junction to Case)	R _{θJC}	5	°C/W

NOTES:

- 1/ For ordering information, price, operating curves, and availability- contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.
- $\overline{4}$ / Pulse Test, P_W = 300 µs, D.C. = 2%.
- 5/ Attach device with low temperature solder such as Sn63 with peak reflow temperature of 215°C and maximum dwell time of 30 sec.

SMG.3-1


Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SGF48N20

Electrical Characteristics3/		Symbol	Min	Тур	Max	Units
Drain to Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 0.6 \text{ mA}$	BV _{DSS}	200	-	-	V
Gate to Source Leakage	V _{GS} = +5 V V _{GS} = -4 V	I _{GSS}	-	1 0.1	7 0.4	mA
Zero Gate Voltage Drain Current	$V_{DS} = 160 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	-	0.1	0.4	mA
Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = 7 \text{ mA}$	$V_{GS(TH)}$	0.8	1.4	2.5	V
Drain to Source On State Resistance ⁴	$V_{GS} = 5 \text{ V}, I_{D} = 20 \text{ A}$	R _{DS(ON)}	ı	8	11	mΩ
Source to Drain Forward Voltage ^{4/}	$I_F = 0.5 A, V_{GS} = 0 V$	V _{SD}	ı	1.8	-	V
Total Gate Charge V _{GS} =	$5 \text{ V}, \text{ V}_{DS} = 100 \text{ V}, \text{ I}_{D} = 20 \text{ A}$	\mathbf{Q}_{G}	-	12	15	nC
Gate to Source Charge Gate to Drain Charge Gate Threshold Charge	V _{DS} = 100 V I _D = 20 A	Q _{GS} Q _{GD} Q _{GTH}	- - -	3 1.8 2.2	- - -	nC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{GS} = 0 V$ $V_{DS} = 100 V$ f = 1 MHz	C _{ISS} C _{OSS} C _{RSS}	- - -	950 450 2.3	1140 680 -	pF
Output Charge	V _{GS} = 0 V, V _{DS} = 100 V	Qoss	-	75	113	nC
Source to Drain Recovery Charge		Q _{RR}	-	0	-	μC
Gate Resistance		R_{G}	-	0.5	-	Ω

DIM	MIN	MAX	
Α	-	.085	
В	.315	.345	
O	.165	.190	
D	.084	.100	
Е	.204	.220	
F	.312	.328	
G	.067	.083	
Η	(.015)		
Dimonoione in inches			

Dimensions in inches

PIN ASSIGNMENT

Source: 2 Drain: 1 Gate: 3 Substrate: *

*Substrate internally tied to Source

AVAILABLE PART NUMBERS:

SMG.3-1: SGF48N20