

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet

Part Number/Ordering Information 1/

SGF30E100

L Screening^{2/}

= Not Screened TX = TX LevelTXV = TXV Level S = S Level

Lead Bend Options

= Straight Leads UB = Up Bend DB = Down Bend

Package

Z8 = 8 Pin TO-254Z

SGF30E100Z8

30 AMP, 1000 VOLTS, 160 m Ω typ **Dual GaN FET Normally-Off**

FEATURES:

- Two Devices in One Compact Hermetically Sealed Package
- · Connect in Parallel to Achieve 30 A
- Can Be Used Individually or in Half Bridge Configuration (15 A)
- 3rd Generation Gallium Nitride Technology
- Combines GaN HEMT and Low Voltage Si MOSFET (Cascode) for Superior Performance
- Works with Common Gate Drivers
- Low RDS(ON)
- Low Q_G Simplifies Gate Drive Circuit
- Very Fast Switching for High Frequency Applications
- Low Thermal Resistance
- TX, TXV, and S-Level Screening Available^{2/}
- Available as Normally On (without Si FET Driver)

APPLICATIONS:

- High Efficiency DC-DC / PoL Converters
- Motor Controller
- Robotics / Automation
- Military and Aerospace

BENEFITS:

- GaN Transistor offers superior advantages over Si based MOSFET: zero QRR, low gate charge, low RDS(ON), fast switching speed and low temperature coefficient.
- Benefits circuit designer through higher efficiency, lower cross-over losses and On-state losses.
- Eliminates the need to add free-wheeling diode

Maximum Ratings (per device) ^{3/}		Symbol	Value	Units
Continuous Drain – Source Voltage		$V_{ t DSS}$	1000	٧
Gate – Source Voltage		V _{GS}	±18	V
Continuous Drain Current	$T_C = 25$ °C $T_C = 100$ °C	I _{D1} I _{D2}	15 10	Α
Pulsed Drain Current Pulse width: 10 μs		I _{D3}	58	Α
Total Power Dissipation		P _D	62	W
Operating & Storage Temperature		T _{OP} & T _{STG}	-55 to +150	°C
Thermal Resistance Junction to Case		R _{eJC}	2	°C/W

NOTES:

- 1/ For ordering information, price, operating curves, and availability-contact factory.
- Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.
- **4/** Pulse Test, $P_W = 300 \, \mu s$, D.C. = 2%.

AVAILABLE PART NUMBERS:

SGF30E100Z8, SGF30E100Z8UB, SGF30E100Z8DB *Dime used for size reference

8 Pin TO-254Z (Z8)

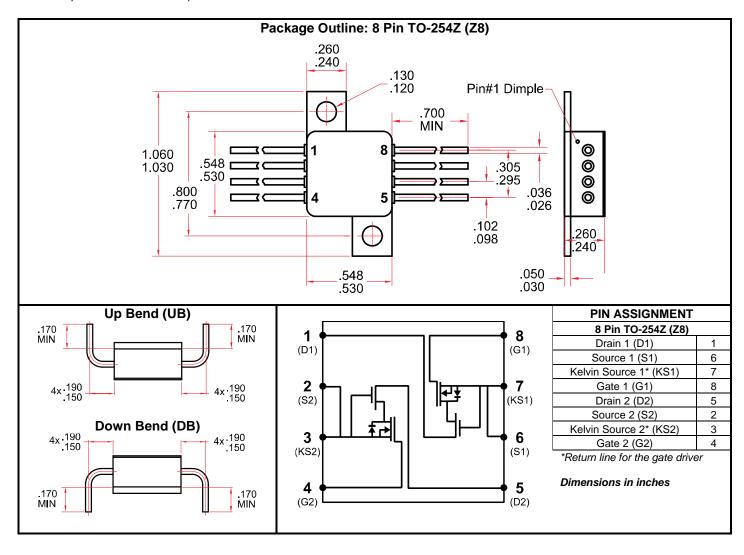
Structure

Cascode Device

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SGF30E100Z8

Electrical Characteristics (per device) ^{3/}		Symbol	Min	Тур	Max	Unit	
Drain to Source Breakdown \	/oltage	$I_D = 100 \ \mu A, \ V_{GS} = 0 \ V$	BV _{DSS}	1000	-	-	V
Gate to Source Forward Leak Gate to Source Reverse Leak	_	$V_{GS} = +18 \text{ V}$ $V_{GS} = -18 \text{ V}$	I _{GSSF} I _{GSSR}		50 10	100 -100	nA
Drain to Source Leakage Cur	rent _V	$V_{DS} = 1000 \text{ V}, V_{GS} = 0 \text{ V}$ DS = 1000 V, V _{GS} = 0 V, T _J = 150°C	I _{DSS}	1 1	1 12	30 -	μΑ
Gate Threshold Voltage		$V_{DS} = V_{GS}$, $I_D = 0.5 \text{ mA}$	V _{GS(TH)}	1.6	2.0	2.6	V
Drain to Source On State Resistance ^{4/}		$V_{GS} = 10 \text{ V}, \ I_D = 10 \text{ A} $ $V_{GS} = 10 \text{ V}, \ I_D = 10 \text{ A}, \ T_J = 150 ^{\circ}\text{C}$	R _{DS(ON)}		160 350	190 -	mΩ
Total Gate Charge Gate to Source Charge Gate to Drain Charge		V _{GS} = 8 V, V _{DS} = 600 V, I _D = 10 A	Q _G Q _{GS} Q _{GD}	- - -	10 2.6 2.9	- - -	nC
Output Charge		V _{GS} = 0 V, V _{DS} = 0 V to 600 V	Qoss	-	53	-	nC
Input Capacitance Output Capacitance Reverse Transfer Capacitanc	e	V _{GS} = 0 V, V _{DS} = 600 V, f = 1 MHz	C _{ISS} C _{OSS} C _{RSS}		780 41 5		pF
Output Capacitance, Energy Related $V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ V to } 600 \text{ V}$		C _{O(ER)}	-	54	-	рF	
Output Capacitance, Time Re	lated	$V_{GS} = 0 \text{ V}, V_{DS} = 0 \text{ V to } 600 \text{ V}$	C _{O(TR)}	-	88	-	pF
Turn-On Delay Rise Time Turn-Off Delay Fall Time	V _{DS} = 600	V , $V_{GS} = 8 V$, $I_{D} = 10 A$, $R_{G} = 22 \Omega$	$egin{array}{c} egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}{c} \egin{array}$		26 5 40 7.4	- - -	ns
Reverse Current ^{4/}	V _{GS} = 0 V, T _C = 100°C, ≤ 25% duty cycle		Is	-	-	9.5	Α
Reverse Voltage ^{4/}		$I_S = 10 \text{ A}, V_{GS} = 0 \text{ V}$ $I_S = 5 \text{ A}, V_{GS} = 0 \text{ V}$	V _{SD}	-	2.3 1.6	- 1.9	٧
Reverse Recovery Time	$I_S = 10 \text{ A}, V_{DD} = 600 \text{ V},$ $di/dt = 1000 \text{ A/}\mu\text{s}$		t _{RR}	-	32	-	ns
Reverse Recovery Charge		$I_S = 10 \text{ A}, V_{DD} = 600 \text{ V},$ $di/dt = 1000 \text{ A/}\mu\text{s}$	Q _{RR}	-	49	-	nC


NOTES:

- 1/ For ordering information, price, operating curves, and availability- contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
 3/ Unless otherwise specified, all electrical characteristics @ 25°C.
 4/ Pulse Test, P_W = 300 μs, D.C. = 2%.

14701 Firestone Blvd * La Mirada, Ča 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SGF30E100Z8

