

Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

Designer's Data Sheet

Part Number/Ordering Information 1/

SGF15D100

L Screening^{2/}

__ = Not Screened TX = TX Level TXV = TXV Level S = S Level

Lead Bend Options (TO-257 only)

> __ = Straight Leads UB = Up Bend DB = Down Bend

Package J = TO-257

SGF15D100

15 AMP, 1000 VOLTS GaN FET Normally-On 140 mΩ typ

FEATURES:

- 3rd Generation Gallium Nitride Technology
- Low R_{DS(ON)}
- Low Q_G Simplifies Gate Drive Circuit
- Very Fast Switching for High Frequency Applications
- Low Thermal Resistance
- · Hermetically Sealed Package
- TX, TXV, and S-Level Screening Available^{2/}
- Available as Normally Off (with FET Driver)

APPLICATIONS:

- High Efficiency DC-DC / PoL Converters
- Motor Controller
- · Robotics / Automation
- Military and Aerospace

BENEFITS:

- GaN Transistor offers superior advantages over Si based MOSFET: zero QRR, low gate charge, low RDS(ON), fast switching speed and low temperature coefficient.
- Benefits circuit designer through higher efficiency, lower cross-over losses and On-state losses.
- · Eliminates the need to add free-wheeling diode

Maximum Ratings ^{3∕}		Symbol	Value	Unit
Continuous Drain – Source Voltage		V _{DSS}	1000	V
Gate – Source Voltage	DC (max/min) Pulse (max/min)	V _{GS}	0 / -30 +5 / -40	V
Continuous Drain Current	T _C = 25°C T _C = 100°C	I _{D1} I _{D2}	15 10	Α
Pulsed Drain Current Pulse width: 10 μs		I _{D3}	58	Α
Total Power Dissipation		\mathbf{P}_{D}	62	W
Operating & Storage Temperature		T _{OP} & T _{STG}	-55 to +150	°C
Thermal Resistance Junction to Case		R _{eJC}	2	°C/W

NOTES

1/ For ordering information, price, operating curves, and availability- contact factory.

2/ Screening based on MIL-PRF-19500. Screening flows available on request.

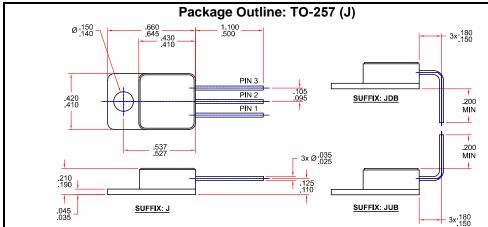
3/ Unless otherwise specified, all electrical characteristics @ 25°C.

4/ Pulse Test, P_W = 300 μs, D.C. = 2%.

Na O

TO-257 (J)

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.


DATA SHEET #: FT0115A

DOCX

SGF15D100

Electrical Characteristics ^{3/}		Symbol	Min	Тур	Max	Unit
Drain to Source Breakdown Voltage	$I_D = 30 \mu A$, $V_{GS} = -30 V$	BV _{DSS}	1000	-	-	V
Gate to Source Forward Leakage Gate to Source Reverse Leakage	$V_{GS} = +3.8 \text{ V}$ $V_{GS} = -30 \text{ V}$	I _{GSSF} I _{GSSR}	-	0.3 2.0	5 50	μΑ
Drain to Source Leakage Current	$V_{DS} = 900 \text{ V}, V_{GS} = -30 \text{ V}$	I _{DSS}	-	3	50	μΑ
Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 0.5 \; mA$	V _{GS(TH)}	-27	-12	-8	V
Drain to Source On State Resistance ^{4/}	$V_{GS} = 0 \text{ V}, I_{D} = 10 \text{ A}$ $V_{GS} = 0 \text{ V}, I_{D} = 10 \text{ A}, T_{J} = 150^{\circ}\text{C}$	R _{DS(ON)}	-	140 350	180 -	mΩ
Total Gate Charge V _{GS} = -	30 V to 0 V, $V_{DS} = 600 \text{ V}$, $I_D = 10 \text{ A}$	Q_G	-	30	-	nC
Total Output Charge	V _{GS} = -30 V, V _{DS} = 0 V to 600 V	Qoss	-	48	-	nC
Input Capacitance Output Capacitance Reverse Transfer Capacitance	Y _{GS} = -30 V, V _{DS} = 600 V, f = 1 MHz	C _{ISS} C _{OSS} C _{RSS}	- - -	135 44 25	- - -	pF
Output Capacitance, Energy Related	V _{GS} = -30 V, V _{DS} = 0 V to 600 V	C _{O(ER)}	-	57	-	рF
Output Capacitance, Time Related	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V} \text{ to } 600 \text{ V}$		-	83	-	pF

PIN ASSIGNMENT				
TO-257				
Drain	1			
Gate	2			
Source	3			

AVAILABLE PART NUMBERS: SGF15D100J, SGF15D100JUB, SGF15D100JDB

Dimensions in Inches

NOTES:

- 1/ For ordering information, price, operating curves, and availability- contact factory.
 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- Unless otherwise specified, all electrical characteristics @ 25°C.
 Pulse Test, P_W = 300 µs, D.C. = 2%.