

Solid State Devices, Inc.

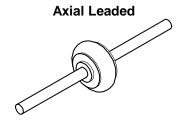
14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

DESIGNER'S DATA SHEET

Part Number / Ordering Information 1/ SDR1 L Screening^{2/} = None TX = TX Level TXV = TXV Level S = S Level = Axial L Package SMS = Surface Mount Square Tab ∟ Voltage A = 50 VK = 800 VB = 100 VM = 1000 VD = 200 VN = 1200 VG = 400 VJ = 600 V

1N6686-1N6687 and 1N6686US-1N6687US

20 AMP 100-200 Volts 40 nsec HYPER FAST RECTIFIER


Features:

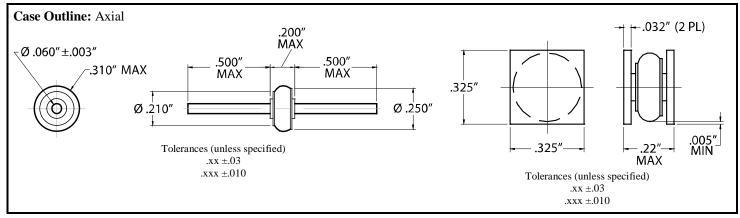
- Replaces DO-4 and DO-5 (1N5816, 1N6306)
- High Current Version of 1N5811
- Hyper Fast Recovery
- PIV to 200 Volts
- Low Reverse Leakage Current
- Hermetically Sealed Void-Free Construction^{3/}
- Monolithic Single Chip Construction
- High Surge Rating
- Low Thermal Resistance
- Available in Surface Mount Versions (-US Suffix)
- TX, TXV, and S-Level Screening Available^{2/}

Maximum Ratings		Symbol	Value	Units
Peak Repetitive Reverse and DC Blocking Voltage	1N6686 & 1N6686US 1N6687 & 1N6687US	$egin{array}{c} V_{RRM} \ V_{RWM} \ V_{R} \end{array}$	100 200	Volts
Average Rectified Forward Current (Resistive Load, 60 Hz Sine Wave, T _A = 25°C)		Io	20	Amps
Repetitive Peak Surge Current (8.3 ms Pulse, Half Sine Wave Superimposed on Io, Allow Junction to Reach Equilibrium Between Pulses, T _A = 25°C)		$\mathbf{I}_{\mathbf{FSM}}$	375	Amps
Operating & Storage Temperature		Top & Tstg	-65 to +175	°C
Maximum Thermal Resistance Junction to Leads, $L = 3/8$ " (1N6686 – 1N6687) Junction to End Tab (1N6686US – 1N6687US)		$egin{aligned} \mathbf{R}_{ heta \mathrm{JL}} \ \mathbf{R}_{ heta \mathrm{JE}} \end{aligned}$	4 3.5	°C/W

Notes:

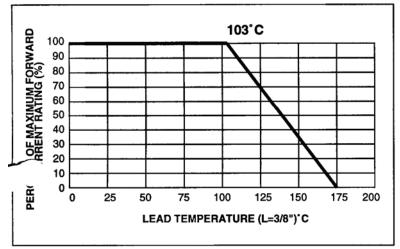
- $\underline{1}/$ For Ordering Information, Price, Operating Curves, and Availability Contact Factory.
- 2/ Screening Based on MIL-PRF-19500. Screening Flows Available on Request.
- 3/ PIND Testing not Required on Void Free Devices per MIL-PRF-19500.

SMS



Solid State Devices, Inc.

14701 Firestone Blvd * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com


1N6686-1N6687 and 1N6686US-1N6687US

Electrical Characteristics	Symbol	Max	Units
Instantaneous Forward Voltage Drop $(I_F = 5 \text{ Adc}, T_A = 25^{\circ}\text{C}, 300 \mu\text{s pulse})$ $(I_F = 20 \text{ Adc}, T_A = 25^{\circ}\text{C}, 300 \mu\text{s pulse})$ $(I_F = 70 \text{ Adc}, T_A = 25^{\circ}\text{C}, 300 \mu\text{s pulse})$	$\mathbf{V}_{\mathbf{F}}$	0.78 0.875 1.0	Vdc
Instantaneous Forward Voltage Drop (I _F = 5 Adc, T _A = -65°C, 300 μs pulse)	V_{F}	1.0	Vdc
Reverse Leakage Current (Rated V_R , $T_A = 25^{\circ}C$, 300 µs pulse minimum)	I_R	50	μА
Reverse Leakage Current (Rated V_R , $T_A = 100^{\circ}$ C, 300 µs pulse minimum)	I_R	10	mA
Junction Capacitance (V _R = 10 Vdc, T _A = 25°C, f = 1MHz)	C _J	350	pF
Reverse Recovery Time $(I_F = 500 \text{ mA}, I_R = 1 \text{A}, I_{RR} = 0.25 \text{A}, T_A = 25 ^{\circ}\text{C})$	t_{rr}	40	nsec

TYPICAL OPERATING CURVES

TA=25°C Unless otherwise specified

