

14701 Firestone Blvd. * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

SED45HB25, SED45HE25 SED45HB35, and SED45HE35

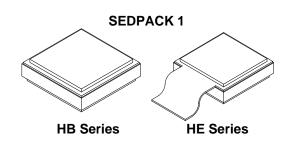
Designer's Data Sheet

Part Number / Ordering Information 1/

45 AMP SUPER SCHOTTKY RECTIFIER 25 - 35 VOLTS

FEATURES:

Optimized for 2.1V and 3.3V output power supplies. The SUPER SCHOTTKY series has been designed to provide ultra low forward voltage drops at low operating temperatures of 75°C.


- Low V_F, typically 380mV at 75°C
- Low reverse leakage
- Surface mountable
- Guard ring for overvoltage protection and ruggedness
- 100°C operating temperature
- Hermetic package
- TX, TXV, and Space Level Screening Available^{2/}

Typical applications include parallel switching power supplies, converters, battery protection circuits, and redundant power subsystems.

MAXIMUM RATINGS		Symbol	Value	Units
Peak Repetitive Reverse Voltage and DC Blocking Voltage	SED4525 SED4535	$egin{array}{c} oldsymbol{V_{RMM}} \ oldsymbol{V_{R}} \end{array}$	25 35	Volts
Average Rectified Forward Current (Resistive load, 60 Hz, sine wave, T _C = 75°C)		lo	45	Amps
Peak Surge Current (8.3 ms pulse, half sine wave superimposed on I_O , allow junction to reach equilibrium between pulses, $T_A = 25^{\circ}C$)			350	Amps
Operating Temperature		T _{OP}	-55 to +125	°C
Storage Temperature		T _{STG}	-55 to +200	°C
Maximum Thermal Resistance Junction to Case		$R_{ heta JC}$	1.25	°C/W

Notes

- 1/ For ordering information, price, operating curves, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.

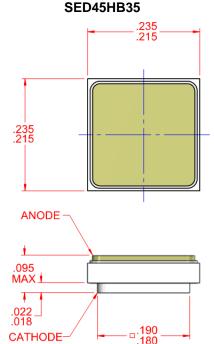
Solid State Devices, Inc.

14701 Firestone Blvd. * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com

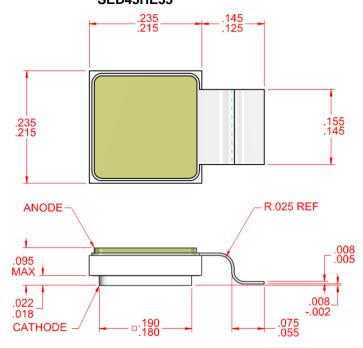
SED45HB25, SED45HE25 SED45HB35, and SED45HE35

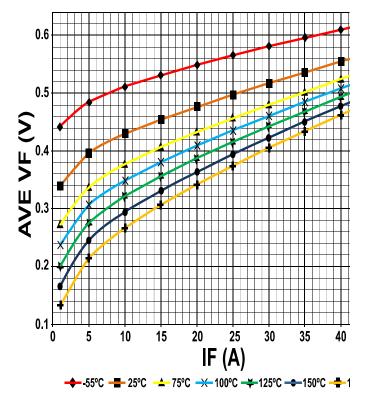
ELECTRICAL CHARACTERISTICS		Symbol	Typical	Maximum	Unit
Instantaneous Forward Voltage Drop ($T_J = 25^{\circ}C$, 300-500 µsec pulse)	$I_{F} = 10 A_{DC}$ $I_{F} = 20 A_{DC}$ $I_{F} = 35 A_{DC}$ $I_{F} = 45 A_{DC}$	V _{F1a} V _{F1b} V _{F1c} V _{F1d}	0.43 0.48 0.54 0.57	0.45 0.52 - 0.70	V _{DC}
Instantaneous Forward Voltage Drop $(T_J = 75^{\circ}C, 300\text{-}500 \mu\text{sec pulse})$	$I_F = 10 A_{DC}$ $I_F = 20 A_{DC}$ $I_F = 35 A_{DC}$ $I_F = 45 A_{DC}$	V _{F2a} V _{F2b} V _{F2c} V _{F2d}	0.38 0.43 0.50 0.55	0.42 - - -	V _{DC}
Instantaneous Forward Voltage Drop (T _J = 100°C, 300-500 μsec pulse)	$I_F = 10 A_{DC}$ $I_F = 20 A_{DC}$ $I_F = 35 A_{DC}$ $I_F = 45 A_{DC}$	V _{F3a} V _{F3b} V _{F3c} V _{F3d}	0.35 0.41 0.49 0.53	- - - -	V _{DC}
Instantaneous Forward Voltage Drop (T _J = 125°C, 300-500 μsec pulse)	$I_F = 10 A_{DC}$ $I_F = 20 A_{DC}$ $I_F = 35 A_{DC}$ $I_F = 45 A_{DC}$	V _{F4a} V _{F4b} V _{F4c} V _{F4d}	0.32 0.39 0.47 0.52	- 0.45 - 0.65	V _{DC}
Instantaneous Forward Voltage Drop ($T_J = -55^{\circ}\text{C}$, 300-500 µsec pulse)	$I_{F} = 10 A_{DC}$ $I_{F} = 20 A_{DC}$ $I_{F} = 35 A_{DC}$ $I_{F} = 45 A_{DC}$	V _{F6a} V _{F6b} V _{F6c} V _{F6d}	0.51 0.55 0.60 0.63	- - - -	V _{DC}
Reverse Leakage Current (T _J = 25°C, 300 μsec pulse minimum)	$V_R = 3.3V_{DC}$ $V_R = 25V_{DC}$ $V_R = 35V_{DC}$	I _{R1a} I _{R1b} I _{R1c}	6.5 15 25	25 100 100	μΑ
Reverse Leakage Current (T _J = 75°C, 300 μsec pulse minimum)	$V_R = 3.3V_{DC}$ $V_R = 25V_{DC}$ $V_R = 35V_{DC}$	I _{R2a} I _{R2b} I _{R2c}	0.3 0.55 0.9	1 5 5	mA
Reverse Leakage Current (T _J = 100°C, 300 μsec pulse minimum)	$V_R = 3.3V_{DC}$ $V_R = 25V_{DC}$ $V_R = 35V_{DC}$	I _{R3a} I _{R3b} I _{R3c}	1.5 2.5 4.0	- - -	mA
Reverse Leakage Current (T _J = 125°C, 300 μsec pulse minimum)	$V_R = 3.3V_{DC}$ $V_R = 25V_{DC}$ $V_R = 35V_{DC}$	I _{R4a} I _{R4b} I _{R4c}	6.5 10 15	20 100 100	mA
Junction Capacitance $(T_J = 25^{\circ}C, f = 1 \text{ MHz})$	$V_{R} = 5V_{DC}$ $V_{R} = 10V_{DC}$	C _{J1} C _{J2}	3000 1450	3750 -	pF

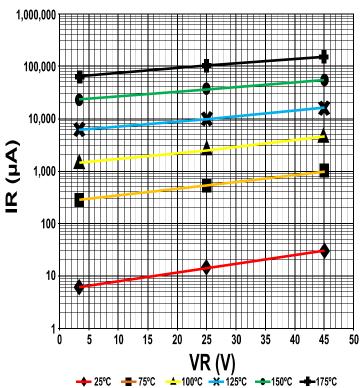
NOTE:	All specifications	s are subject to	change witho	ut notification.
SCD's fo	r these devices sh	ould be reviev	ved by SSDI p	rior to release.



Solid State Devices, Inc.


14701 Firestone Blvd. * La Mirada, Ca 90638 Phone: (562) 404-4474 * Fax: (562) 404-1773 ssdi@ssdi-power.com * www.ssdi-power.com


SED45HB25, SED45HE25 SED45HB35, and SED45HE35


CASE OUTLINE: SED45HB25

CASE OUTLINE: SED45HE25 SED45HE35

