

SSR04150S.22 thru SSR04200S.22 and SSR04150-4 thru SSR04200-4

Designer's Data Sheet

Part Number / Ordering Information^{1/}

SSR04

Screening²/ _ = Not Screened
 TX = TX Level
 TXV = TXV Level
 S = S Level

Package
 S.22 = SMD.22
 S.22C = SMD.22C (Ceramic Lid)
 -4 = LCC4

Voltage 150 = 150 V
 200 = 200 V

4 AMP HERMETIC SURFACE MOUNT SCHOTTKY RECTIFIER 150 - 200 VOLTS

FEATURES:

- Extremely small footprint
- Extremely low forward voltage drop
- Low reverse leakage
- Hermetically sealed surface mount package
- Guard ring for overvoltage protection
- 175°C operating junction temperature
- TX, TXV, and S level screening available consult factory

MAXIMUM RATINGS ^{3/4/}		Symbol	Value	Unit	
Peak Repetitive Reverse and DC Blocking Voltage	SSR04150 SSR04200	V _{RRM} V _{RWM} V _R	150 200	V	
Average Rectified Forward Current (Resistive load, 60 Hz, sine wave, T _A = 25°C)		lo	4	Α	
Peak Surge Current (8.3 ms pulse, half sine wave superimposed on I _O , allow junction to reach equilibrium between pulses, T _A = 25°C)		I _{FSM}	50	Α	
Operating & Storage Temperature		T _{OP} & T _{stg}	-65 to +175	°C	
Maximum Thermal Resistance (Junction to Case)		Rejc	16	°C/W	

NOTES: SMD.22 (S.22) SMD.22C (S.22C) LCC4 (-4)

- 1/ For ordering information, price, and availability contact factory.
- 2/ Screening based on MIL-PRF-19500. Screening flows available on request.
- 3/ Unless otherwise specified, all electrical characteristics @ 25°C.
- 4/ SMD.22: For optimal performance, connect anode terminals together.
 - LCC4: For optimal performance, connect anode terminals together and cathode terminals together.
- 5/ Pulsed per MIL-STD-750.
- 6/ For SMD.22C (Ceramic Lid) Package Height = .070" ± .010"

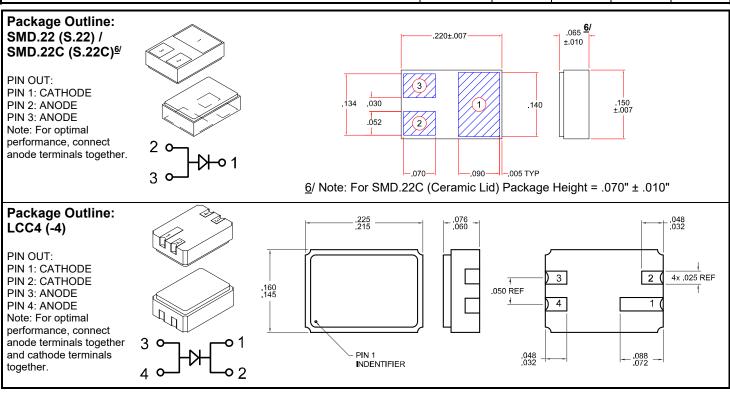
(dime used for size reference)

NOTE: All specifications are subject to change without notification. SCD's for these devices should be reviewed by SSDI prior to release.

DATA SHEET #: SH0073D

DOCX

Solid State Devices, Inc.


14701 Firestone Blvd * La Mirada, CA 90638

Phone: (562) 404-4474 * Fax: (562) 404-1773

ssdi@ssdi-power.com * www.ssdi-power.com

SSR04150S.22 thru SSR04200S.22 and SSR04150-4 thru SSR04200-4

sal@ssal-power.com * <u>www.ssal-power.com</u>						
ELECTRICAL CHARACTERISTICS 4/5/		Symbol	Min	Тур	Max	Unit
Instantaneous Forward Voltage Drop (T _A = 25°C, pulsed)	I _F = 0.1 A	V_{F1}	-	0.57	-	
	$I_F = 0.5 A$	V_{F2}	-	0.72	0.80	V _{DC}
	I _F = 1 A	V F3	-	0.77	0.85	
	I _F = 2 A	V _{F4}	-	0.84	-	
	I _F = 4 A	V _{F5}	-	0.92	1.00	
Instantaneous Forward Voltage Drop (T _A = -55°C, pulsed)	$I_F = 1 A$	V_{F6}	-	0.92	-	
	$I_F = 2 A$	V_{F7}	-	1.11	-	V _{DC}
	$I_F = 4 A$	V_{F8}	-	1.45	-	
Instantaneous Forward Voltage Drop (T _A = 125°C, pulsed)	I _F = 0.1 A	V _{F11}	-	0.43	_	V _{DC}
	$I_F = 0.5 A$	V_{F12}	-	0.56	0.65	
	$I_F = 1 A$	V_{F13}	-	0.62	0.71	
	$I_F = 2 A$	V_{F14}	-	0.70	-	
	$I_F = 4 A$	V F15	-	0.79	0.88	
Reverse Leakage Current (Rated V _R , T _A = 25°C, pulsed)		I _{R1}	-	0.15	2	μΑ
Reverse Leakage Current (Rated V _R , T _A = 100°C, pulsed)		I _{R2}	-	30	-	μΑ
Reverse Leakage Current (Rated V _R , T _A = 125°C, pulsed)		I _{R3}	-	150	200	μΑ
Reverse Leakage Current (Rated V _R , T _A = 150°C, pulsed)		I _{R4}	-	600	-	μΑ
Junction Capacitance (f = 1 MHz, T _A = 25°C)	$V_R = 5 V$ $V_R = 10 V$	C₁	-	40 30	- 40	pF

